For example Cabinetmaker 1 estimates they will take 50 hours to complete all the oak cabinets and 60 hours to complete all the cherry cabinets. However Cabinetmaker 1 only has 40 hours available for the final finishing operation. Thus Cabinetmaker 1 can only complete 40/50 = 0.80 or 80% of the oak cabinets if they worked only on oak cabinets. Similarly Cabinetmaker 1 can only complete 40 = 60 = 0.67 or 67% of the cherry cabinets if they worked only on cherry cabinets.a. Formulate a linear programming model that can be used to determine the percentage of the oak cabinets and the percentage of the cherry cabinets that should be given to each of the three cabinetmakers in order to minimize the total cost of completing both projects.b. Solve the model formulated in part (a). What percentage of the oak cabinets and what percentage of the cherry cabinets should be assigned to each cabinetmaker? What is the total cost of completing both projects?c. If Cabinetmaker 1 has additional hours available would the optimal solution change? Explain.d. If Cabinetmaker 2 has additional hours available would the optimal solution change? Explain.e. Suppose Cabinetmaker 2 reduced their cost to $38 per hour. What effect would this change have on the optimal solution?Explain.